Science report: Who gets hotter, wetter with climate change — WANE

WASHINGTON (AP) — A draft federal science report on the effects of global warming breaks down how climate change has already hit different regions of the United States. It also projects expected changes by region. OVERALL (contiguous 48 states) —The annual average temperature is already 1.18 degrees warmer the last 30 years than it was…

via Science report: Who gets hotter, wetter with climate change — WANE

Advertisements

Intensity of hurricanes is increased by global warming — nuclear-news

Dahr Jamail | Record Heating of Earth’s Oceans Is Driving Uptick in Hurricanes http://www.truth-out.org/news/item/37877-record-heating-of-earth-s-oceans-is-driving-uptick-in-hurricanes Thursday, 06 October 2016 By Dahr Jamail, Truthout | Report As Hurricane Matthew impacts the East Coast of the US this week, it is important to consider how rising ocean temperatures are contributing to the intensification of storms worldwide. Earlier this year, a scientific study titled […]

via Intensity of hurricanes is increased by global warming — nuclear-news

Oh, darn. Study: Most meltwater in Greenland fjords likely comes from icebergs, not glaciers — Watts Up With That?

Climate: Sea ice at both poles way below average — Summit County Citizens Voice

Antarctic sea ice retreat could set stage for ice shelf collapses Staff ReportMonths of above-average temperatures in the Arctic slowed the growth of sea ice formation to a crawl during the second half of October, the National Snow and Ice Data Center reported in its latest monthly update.The ice scientists said that, starting Oct. 20, […]

via Climate: Sea ice at both poles way below average — Summit County Citizens Voice

Japan BOM: Global Warming will cause Heavier Snowfall — Watts Up With That?

Guest essay by Eric Worrall The Japan Meteorological Agency thinks global warming will lead to heavier snowfall in Northern Japan. According to writer Susumu Yoshida of the Asahi Shimbun, a prominent Japanese national newspaper; Global warming will bring more heavy snow in northern Japan Logic would tell us that continuing global warming will lead to […]

Global warming will bring more heavy snow in northern Japan

Logic would tell us that continuing global warming will lead to less snowfall, but the opposite will be true in some areas of northern Japan, according to a meteorological simulation.

By the end of this century, while the country as a whole will receive a smaller amount of snow, Hokkaido and inland areas of the Hokuriku region will experience more frequent heavy snowfalls, the Meteorological Research Institute of the Japan Meteorological Agency announced Sept. 23.

The reasoning behind the prediction is that larger amounts of water vapor in the atmosphere caused by higher temperatures will make it easier for belts of snow clouds to develop above the Sea of Japan when the air pressure pattern is typical of the winter.

According to the results of the institution’s precise simulation, the Japanese archipelago will have lighter snowfall during the winter, if the mean annual temperature increases three degrees from the current level between 2080 and 2100.

Read more: http://www.asahi.com/ajw/articles/AJ201610100004.html

Tracking original source material is a bit tricky because I don’t read or write Japanese, but the following appears to be part of an official Japanese Meteorological Report – though I am not sure if it is the source material referenced by Yoshida.

Snowfall in winter (Fig 6.1, Fig 6.2)

Snowfall in winter (December – March) is projected to decrease under both scenarios A1B and B1, in most areas except Hokkaido. The projected decrease for scenario A1B is greater than that for B1.

The projected increase in snowfall at high altitudes in Hokkaido for scenario A1B is greater than for the B1.

Heavy snowfall in winter (Fig 7.1, Table 7.1, Table 7.2)

The frequency of heavy snowfall is projected to increase at high altitudes in Hokkaido. The projected rate of increase for scenario A1B is greater than that for B1.

In most areas except Hokkaido, the frequency of heavy snowfall is projected to decrease for scenario A1B more than that for B1.

Read more: http://ds.data.jma.go.jp/tcc/tcc/products/gwp/gwp7/html_e/summary.html

All I can say is thank goodness we are not experiencing global cooling, otherwise we might have no snowfall at all.

 

via Japan BOM: Global Warming will cause Heavier Snowfall — Watts Up With That?

It is Difficult to measure Global Warming Erosion due to “Shifting” Weather Patterns

According to NASA, Antarctica is actually gaining ice.368c648c-546b-4ed2-b9c1-838a2afeb85b-2060x1236

Antarctica is currently gaining more ice than it’s losing, according to a recent study by NASA.

 The surprising findings, detailed in the Journal of Glaciology, doesn’t deny that glaciers are melting at an increased rate as a result of global warming, but suggests current gains outweigh the losses in other areas. Using satellite data, researchers estimate the Antarctic ice sheet had a net gain of 112 billion tons of ice per year from 1992 to 2001. This net gain eventually slowed between 2003 and 2008 to 82 billion tons of ice per year.

“We’re essentially in agreement with other studies that show an increase in ice discharge in the Antarctic Peninsula and the Thwaites and Pine Island region of West Antarctica,” said lead researcher Jay Zwally from NASA Goddard Space Flight Center “Our main disagreement is for East Antarctica and the interior of West Antarctica—there, we see an ice gain that exceeds the losses in the other areas.”

 The study challenges previous research, including the UN Intergovernmental Panel on Climate Change’s 2013 report (pdf), which attributed 0.27 millimeters per year of sea level rise to a melting Antarctica.

But if Antarctica is not losing land ice overall, then where is this sea-level rise coming from? Researchers aren’t sure, suggesting there is another contribution to sea level rises that has yet to be accounted for.

The findings show just how difficult it is to measure changes in Antarctica. Researchers analyzed variations in the surface height of the Antarctic ice sheet using radar instruments on two European Space Agency satellites from 1992 to 2001, and by laser sensors on a NASA satellite from 2003 to 2008. While other scientists had also observed gains in elevations in East Antarctica, they had wrongly attributed it to recent snowfall. Researchers used meteorological data dating back to 1979 to show the ice cores in the area had in fact been thickening.

Antarctica may not be contributing to sea level rises, but researchers caution against celebrating as the current trend could reverse within a few decades. Courtesy of: Quartz. http://qz.com/538902

Severe El Niño events will lead to coastal flooding and erosion

Map courtesy NOAA

The projected upsurge of severe El Niño and La Niña events will cause an increase in storm events leading to extreme coastal flooding and erosion in populated regions across the Pacific Ocean, according to a multi-agency study published Monday in Nature Geoscience.

The impact of these storms is not presently included in most studies on future coastal vulnerability, which look primarily at sea level rise. New research data, from 48 beaches across three continents — including Hawaii — and five countries bordering the Pacific Ocean, suggest the predicted increase will exacerbate coastal erosion irrespective of sea level rise affecting the region.

Researchers from 13 different institutions analyzed coastal data from across the Pacific Ocean basin from 1979 to 2012. The scientists sought to determine if patterns in coastal change could be connected to major climate cycles.

Although previous studies have analyzed coastal impacts at local and regional levels, this is the first to pull together data from across the Pacific to determine basin-wide patterns. The research group determined all Pacific Ocean regions investigated were affected during either an El Niño or La Niña year.

When the west coast of the U.S. mainland and Canada, Hawaii, and northern Japan felt the coastal impacts of El Niño, characterized by bigger waves, different wave direction, higher water levels and/or erosion, the opposite region in the Southern Hemisphere of New Zealand and Australia experienced “suppression,” such as smaller waves and less erosion.10881697_595527693881949_8814641042094097058_n

The pattern then generally flips: during La Niña, the Southern Hemisphere experienced more severe conditions.

The published paper, “Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation” is available online.

Abstract: To predict future coastal hazards, it is important to quantify any links between climate drivers and spatial patterns of coastal change. However, most studies of future coastal vulnerability do not account for the dynamic components of coastal water levels during storms, notably wave-driven processes, storm surges and seasonal water level anomalies, although these components can add metres to water levels during extreme events. Here we synthesize multi-decadal, co-located data assimilated between 1979 and 2012 that describe wave climate, local water levels and coastal change for 48 beaches throughout the Pacific Ocean basin. We find that observed coastal erosion across the Pacific varies most closely with El Niño/Southern Oscillation, with a smaller influence from the Southern Annular Mode and the Pacific North American pattern. In the northern and southern Pacific Ocean, regional wave and water level anomalies are significantly correlated to a suite of climate indices, particularly during boreal winter; conditions in the northeast Pacific Ocean are often opposite to those in the western and southern Pacific. We conclude that, if projections for an increasing frequency of extreme El Niño and La Niña events over the twenty-first century are confirmed, then populated regions on opposite sides of the Pacific Ocean basin could be alternately exposed to extreme coastal erosion and flooding, independent of sea-level rise.

Japan Tsunami: Victims remembered

See more: via: www.nature.com

References:

  1. Nicholls, R. J. et al. Sea-level rise and its possible impacts given a ‘beyond 4°C world’ in the twenty-first century. Phil. Trans. R. Soc. A 369, 161181 (2011).
  2. Hallegate, S., Green, C., Nicholls, R. J. & Corfee-Morlot, J. Future flood losses in major coastal cities. Nature Clim. Change 3, 802806 (2013).
  3. Young, I. R., Zieger, S. & Babanin, A. V. Global trends in wind speed and wave height.Science 332, 451455 (2011).
  4. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific decadal climate oscillation with impacts on salmon. Bull. Am. Meteorol. Soc. 78, 10691079 (1997).
  5. Wolter, K. The Southern Oscillation in surface circulation and climate over the tropical Atlantic, Eastern Pacific, and Indian Oceans as captured by cluster analysis. J. Clim. Appl. Meteorol. 26, 540558 (1987).
  6. Wolter, K. & Timlin, M. S. in Proc. 17th Clim. Diagnostics Work. 5257 (CIMMS and the School of Meteorology, Univ. of Oklahoma, 1993).
  7. Rogers, J. C. & van Loon, H. Spatial variability of sea level pressure and 500 mb height anomalies over the Southern Hemisphere. Mon. Weath. Rev. 110, 13751392 (1982).
  8. Hemer, M. A., Church, J. A. & Hunter, J. R. Variability and trends in the directional wave climate of the Southern Hemisphere. Int. J. Climatol. 30, 475491 (2010).
  9. Wallace, J. M. & Gutzler, D. S. Teleconnections in the geopotential height field during the Northern Hemisphere. Mon. Weath. Rev. 109, 784812 (1981).
  10. Kuriyama, Y., Banno, M. & Suzuki, T. Linkages among interannual variations of shoreline, wave and climate at Hasaki, Japan. Geophys. Res. Lett. 39, L06604 (2012).
  11. Storlazzi, C. D. & Griggs, G. B. Influence of El Niño-Southern Oscillation (ENSO) events on the evolution of central California’s shoreline. Geol. Soc. Am. Bull. 112, 236249 (2000).
  12. Sallenger, A. H. et al. Sea-cliff erosion as a function of beach changes and extreme wave runup during the 1997–1998 El Niño. Mar. Geol. 187, 279297 (2002).
  13. Allan, J. C. & Komar, P. D. Climate controls on US West Coast erosion processes. J. Coast. Res. 22, 511529 (2006).
  14. Abyswirigunawardena, D. S. & Walker, I. J. Sea level responses to climate variability and change in northern British Columbia. Atmosphere 46, 277296 (2008).
  15. Barnard, P. L. et al. The impact of the 2009–10 El Niño Modoki on U.S. West Coast beaches. Geophys. Res. Lett. 38, L13604 (2011).
  16. Heathfield, D. K., Walker, I. J. & Atkinson, D. E. Erosive water level regime and climatic variability forcing of beach–dune systems on south-western Vancouver Island, British Columbia, Canada. Earth Surf. Land. 38, 751762 (2013).
  17. Smith, R. K. & Benson, A. P. Beach profile monitoring: How frequent is sufficient? J. Coast. Res. 34, 573579 (2001).
  18. Ranasinghe, R., McLoughlin, R., Short, A. & Symonds, G. The Southern Oscillation Index, wave climate, and beach rotation. Mar. Geol. 204, 273287 (2004).
  19. Harley, M. D., Turner, I. L., Short, A. D. & Ranasinghe, R. Interannual variability and controls of the Sydney wave climate. Int. J. Climatol. 30, 13221335 (2010).
  20. Thom, B. G. in Landform Evolution in Australia: Canberra (eds Davies, J. L. & Williams, M. A.) 197214 (Australian National University Press, 1978).
  21. Bryant, E. Regional sea level, Southern Oscillation and beach change, New South Wales, Australia. Nature 305, 213216 (1983).
  22. Clarke, D. J. & Eliot, I. G. Low-frequency variation in the seasonal intensity of coastal weather systems and sediment movement on the beachface of a sandy beach. Mar. Geol.79, 2339 (1988).
  23. Phinn, S. R. & Hastings, P. A. Southern Oscillation influences on the wave climate of south-eastern Australia. J. Coast. Res. 8, 579592 (1992).
  24. Dee, D. P. et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553597 (2010).
  25. Shimura, T., Mori, N. & Mase, H. Ocean waves and teleconnection patterns in the Northern Hemisphere. J. Clim. 26, 86548670 (2013).
  26. Tokinaga, H. & Xie, S.-P. Wave- and anemometer-based sea surface wind (WASWind) for climate change analysis. J. Clim. 24, 267285 (2011).
  27. Mori, N., Yasuda, T., Mase, H., Tom, T. & Oku, Y. Projections of extreme wave climate change under global warming. Hydrol. Res. Lett. 4, 1519 (2010).
  28. Dobrynin, M., Murawsky, J. & Yang, S. Evolution of the global wind wave climate in CMIP5 experiments. Geophys. Res. Lett. 39, L18606 (2012).
  29. Hemer, M. A., Fan, Y., Mori, N., Semedo, A. & Wang, X. L. Projected changes in wave climate from a multi-model ensemble. Nature Clim. Change 3, 471476 (2013).
  30. Semedo, A. et al. Projection of global wave climate change toward the end of the twenty-first century. J. Clim. 26, 82698288 (2013).
  31. Previdi, M. & Liepert, B. G. Annular modes of Hadley cell expansion under global warming.Geophys. Res. Lett. 34, L22701 (2007).
  32. Arblaster, J. M., Meehl, G. A. & Karoly, D. J. Future climate change in the Southern Hemisphere. Competing effects of ozone and greenhouse gases. Geophys. Res. Lett. 38,L02701 (2011).
  33. Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño.Nature Geosci. 3, 391397 (2010).
  34. Stevenson, S. L. Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophys. Res. Lett. 39, L17703 (2012).
  35. Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming.Nature Clim. Change 4, 111116 (2014).
  36. WCRP Coupled Model Intercomparison Project Phase 5—CMIP5. CLIVAR Exchanges 16(Special issue), 1–52 (2011)
  37. Cai, W. et al. Increased frequency of La Niña events under greenhouse warming. Nature Clim. Change 5, 132137 (2015).
  38. L’Heureux, M. L., Lee, S. & Lyon, B. Recent multidecadal strengthening of the Walker Circulation across the tropical Pacific. Nature Clim. Change 3, 571576 (2013).
  39. Erikson, L. H., Hegermiller, C. A., Barnard, P. L., Ruggiero, P. & van Ormondt, M. Projected wave conditions in the Eastern North Pacific under the influence of two CMIP5 climate scenarios. Ocean Model. (2015).
  40. Harley, M. D., Barnard, P. L. & Turner, I. L. Coastal Sediments 2015: The Proceedings of the Coastal Sediments 2015 (World Scientific, 2015).