Tagged: global news Toggle Comment Threads | Keyboard Shortcuts

  • SW Cali Commentary / Net Production 4:17 am on November 28, 2016 Permalink | Reply
    Tags: , , , global news, , , hurricanes, nuclear news, , , ,   

    Intensity of hurricanes is increased by global warming — nuclear-news 

    Dahr Jamail | Record Heating of Earth’s Oceans Is Driving Uptick in Hurricanes http://www.truth-out.org/news/item/37877-record-heating-of-earth-s-oceans-is-driving-uptick-in-hurricanes Thursday, 06 October 2016 By Dahr Jamail, Truthout | Report As Hurricane Matthew impacts the East Coast of the US this week, it is important to consider how rising ocean temperatures are contributing to the intensification of storms worldwide. Earlier this year, a scientific study titled […]

    via Intensity of hurricanes is increased by global warming — nuclear-news

     
  • SW Cali Commentary / Net Production 8:42 pm on January 20, 2016 Permalink | Reply
    Tags: california institute of technology, , , global news, , , , planets, , , , , , , world news   

    Ninth Planet May Have Been Discovered, Researchers Say 

    You might have a replacement, Pluto. There could be another planet in our solar system. 5dcf8bbaa2d419038e0f6a706700bdb4

    Researchers at the California Institute of Technology have found evidence in the outer solar system of an object that could be a real ninth planet.

    There could be another planet in our solar system. Researchers at the California Institute of Technology have found evidence in the outer solar system of an object that could be a real ninth planet. Nicknamed Planet Nine, it "has a mass about 10 times that of Earth and orbits about 20 times farther from the sun" than Neptune. That means "it would take this new planet between 10,000 and 20,000 years to make just one full orbit around the sun," according to a Caltech.

    There could be another planet in our solar system. Researchers at the California Institute of Technology have found evidence in the outer solar system of an object that could be a real ninth planet. Nicknamed Planet Nine, it “has a mass about 10 times that of Earth and orbits about 20 times farther from the sun” than Neptune. That means “it would take this new planet between 10,000 and 20,000 years to make just one full orbit around the sun,” according to a Caltech.

    Nicknamed Planet Nine, it “has a mass about 10 times that of Earth and orbits about 20 times farther from the sun” than Neptune. That means “it would take this new planet between 10,000 and 20,000 years to make just one full orbit around the sun,” according to Caltech.

    Researchers Konstantin Batygin and Mike Brown haven’t actually seen the planet, but other research helped lead them to conclude that there is one. Basically, they found that certain objects in the Kuiper Belt — the field of icy objects and debris beyond Neptune — had orbits that peculiarly pointed in the same direction.

    Over time, mathematical modeling and computer simulation led them to the conclusion that a planet was exerting the gravity necessary to shape these orbits.

    Brown says “there have only been two true planets discovered since ancient times, and this would be a third. It’s a pretty substantial chunk of our solar system that’s still out there to be found, which is pretty exciting.”

    Already, Caltech is pretty confident Planet Nine is large enough to rule out any debate about whether it’s a true planet — unlike Pluto, which got the boot in 2006

    Source: Ninth Planet May Have Been Discovered, Researchers Say

     
  • SW Cali Commentary / Net Production 3:16 am on September 22, 2015 Permalink | Reply
    Tags: , , , , el nino, , , flood warning, global news, , , , , , , , , , , tsunami warning, ,   

    Severe El Niño events will lead to coastal flooding and erosion 

    Map courtesy NOAA

    The projected upsurge of severe El Niño and La Niña events will cause an increase in storm events leading to extreme coastal flooding and erosion in populated regions across the Pacific Ocean, according to a multi-agency study published Monday in Nature Geoscience.

    The impact of these storms is not presently included in most studies on future coastal vulnerability, which look primarily at sea level rise. New research data, from 48 beaches across three continents — including Hawaii — and five countries bordering the Pacific Ocean, suggest the predicted increase will exacerbate coastal erosion irrespective of sea level rise affecting the region.

    Researchers from 13 different institutions analyzed coastal data from across the Pacific Ocean basin from 1979 to 2012. The scientists sought to determine if patterns in coastal change could be connected to major climate cycles.

    Although previous studies have analyzed coastal impacts at local and regional levels, this is the first to pull together data from across the Pacific to determine basin-wide patterns. The research group determined all Pacific Ocean regions investigated were affected during either an El Niño or La Niña year.

    When the west coast of the U.S. mainland and Canada, Hawaii, and northern Japan felt the coastal impacts of El Niño, characterized by bigger waves, different wave direction, higher water levels and/or erosion, the opposite region in the Southern Hemisphere of New Zealand and Australia experienced “suppression,” such as smaller waves and less erosion.10881697_595527693881949_8814641042094097058_n

    The pattern then generally flips: during La Niña, the Southern Hemisphere experienced more severe conditions.

    The published paper, “Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation” is available online.

    Abstract: To predict future coastal hazards, it is important to quantify any links between climate drivers and spatial patterns of coastal change. However, most studies of future coastal vulnerability do not account for the dynamic components of coastal water levels during storms, notably wave-driven processes, storm surges and seasonal water level anomalies, although these components can add metres to water levels during extreme events. Here we synthesize multi-decadal, co-located data assimilated between 1979 and 2012 that describe wave climate, local water levels and coastal change for 48 beaches throughout the Pacific Ocean basin. We find that observed coastal erosion across the Pacific varies most closely with El Niño/Southern Oscillation, with a smaller influence from the Southern Annular Mode and the Pacific North American pattern. In the northern and southern Pacific Ocean, regional wave and water level anomalies are significantly correlated to a suite of climate indices, particularly during boreal winter; conditions in the northeast Pacific Ocean are often opposite to those in the western and southern Pacific. We conclude that, if projections for an increasing frequency of extreme El Niño and La Niña events over the twenty-first century are confirmed, then populated regions on opposite sides of the Pacific Ocean basin could be alternately exposed to extreme coastal erosion and flooding, independent of sea-level rise.

    Japan Tsunami: Victims remembered

    See more: via: http://www.nature.com

    References:

    1. Nicholls, R. J. et al. Sea-level rise and its possible impacts given a ‘beyond 4°C world’ in the twenty-first century. Phil. Trans. R. Soc. A 369, 161181 (2011).
    2. Hallegate, S., Green, C., Nicholls, R. J. & Corfee-Morlot, J. Future flood losses in major coastal cities. Nature Clim. Change 3, 802806 (2013).
    3. Young, I. R., Zieger, S. & Babanin, A. V. Global trends in wind speed and wave height.Science 332, 451455 (2011).
    4. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific decadal climate oscillation with impacts on salmon. Bull. Am. Meteorol. Soc. 78, 10691079 (1997).
    5. Wolter, K. The Southern Oscillation in surface circulation and climate over the tropical Atlantic, Eastern Pacific, and Indian Oceans as captured by cluster analysis. J. Clim. Appl. Meteorol. 26, 540558 (1987).
    6. Wolter, K. & Timlin, M. S. in Proc. 17th Clim. Diagnostics Work. 5257 (CIMMS and the School of Meteorology, Univ. of Oklahoma, 1993).
    7. Rogers, J. C. & van Loon, H. Spatial variability of sea level pressure and 500 mb height anomalies over the Southern Hemisphere. Mon. Weath. Rev. 110, 13751392 (1982).
    8. Hemer, M. A., Church, J. A. & Hunter, J. R. Variability and trends in the directional wave climate of the Southern Hemisphere. Int. J. Climatol. 30, 475491 (2010).
    9. Wallace, J. M. & Gutzler, D. S. Teleconnections in the geopotential height field during the Northern Hemisphere. Mon. Weath. Rev. 109, 784812 (1981).
    10. Kuriyama, Y., Banno, M. & Suzuki, T. Linkages among interannual variations of shoreline, wave and climate at Hasaki, Japan. Geophys. Res. Lett. 39, L06604 (2012).
    11. Storlazzi, C. D. & Griggs, G. B. Influence of El Niño-Southern Oscillation (ENSO) events on the evolution of central California’s shoreline. Geol. Soc. Am. Bull. 112, 236249 (2000).
    12. Sallenger, A. H. et al. Sea-cliff erosion as a function of beach changes and extreme wave runup during the 1997–1998 El Niño. Mar. Geol. 187, 279297 (2002).
    13. Allan, J. C. & Komar, P. D. Climate controls on US West Coast erosion processes. J. Coast. Res. 22, 511529 (2006).
    14. Abyswirigunawardena, D. S. & Walker, I. J. Sea level responses to climate variability and change in northern British Columbia. Atmosphere 46, 277296 (2008).
    15. Barnard, P. L. et al. The impact of the 2009–10 El Niño Modoki on U.S. West Coast beaches. Geophys. Res. Lett. 38, L13604 (2011).
    16. Heathfield, D. K., Walker, I. J. & Atkinson, D. E. Erosive water level regime and climatic variability forcing of beach–dune systems on south-western Vancouver Island, British Columbia, Canada. Earth Surf. Land. 38, 751762 (2013).
    17. Smith, R. K. & Benson, A. P. Beach profile monitoring: How frequent is sufficient? J. Coast. Res. 34, 573579 (2001).
    18. Ranasinghe, R., McLoughlin, R., Short, A. & Symonds, G. The Southern Oscillation Index, wave climate, and beach rotation. Mar. Geol. 204, 273287 (2004).
    19. Harley, M. D., Turner, I. L., Short, A. D. & Ranasinghe, R. Interannual variability and controls of the Sydney wave climate. Int. J. Climatol. 30, 13221335 (2010).
    20. Thom, B. G. in Landform Evolution in Australia: Canberra (eds Davies, J. L. & Williams, M. A.) 197214 (Australian National University Press, 1978).
    21. Bryant, E. Regional sea level, Southern Oscillation and beach change, New South Wales, Australia. Nature 305, 213216 (1983).
    22. Clarke, D. J. & Eliot, I. G. Low-frequency variation in the seasonal intensity of coastal weather systems and sediment movement on the beachface of a sandy beach. Mar. Geol.79, 2339 (1988).
    23. Phinn, S. R. & Hastings, P. A. Southern Oscillation influences on the wave climate of south-eastern Australia. J. Coast. Res. 8, 579592 (1992).
    24. Dee, D. P. et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553597 (2010).
    25. Shimura, T., Mori, N. & Mase, H. Ocean waves and teleconnection patterns in the Northern Hemisphere. J. Clim. 26, 86548670 (2013).
    26. Tokinaga, H. & Xie, S.-P. Wave- and anemometer-based sea surface wind (WASWind) for climate change analysis. J. Clim. 24, 267285 (2011).
    27. Mori, N., Yasuda, T., Mase, H., Tom, T. & Oku, Y. Projections of extreme wave climate change under global warming. Hydrol. Res. Lett. 4, 1519 (2010).
    28. Dobrynin, M., Murawsky, J. & Yang, S. Evolution of the global wind wave climate in CMIP5 experiments. Geophys. Res. Lett. 39, L18606 (2012).
    29. Hemer, M. A., Fan, Y., Mori, N., Semedo, A. & Wang, X. L. Projected changes in wave climate from a multi-model ensemble. Nature Clim. Change 3, 471476 (2013).
    30. Semedo, A. et al. Projection of global wave climate change toward the end of the twenty-first century. J. Clim. 26, 82698288 (2013).
    31. Previdi, M. & Liepert, B. G. Annular modes of Hadley cell expansion under global warming.Geophys. Res. Lett. 34, L22701 (2007).
    32. Arblaster, J. M., Meehl, G. A. & Karoly, D. J. Future climate change in the Southern Hemisphere. Competing effects of ozone and greenhouse gases. Geophys. Res. Lett. 38,L02701 (2011).
    33. Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño.Nature Geosci. 3, 391397 (2010).
    34. Stevenson, S. L. Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophys. Res. Lett. 39, L17703 (2012).
    35. Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming.Nature Clim. Change 4, 111116 (2014).
    36. WCRP Coupled Model Intercomparison Project Phase 5—CMIP5. CLIVAR Exchanges 16(Special issue), 1–52 (2011)
    37. Cai, W. et al. Increased frequency of La Niña events under greenhouse warming. Nature Clim. Change 5, 132137 (2015).
    38. L’Heureux, M. L., Lee, S. & Lyon, B. Recent multidecadal strengthening of the Walker Circulation across the tropical Pacific. Nature Clim. Change 3, 571576 (2013).
    39. Erikson, L. H., Hegermiller, C. A., Barnard, P. L., Ruggiero, P. & van Ormondt, M. Projected wave conditions in the Eastern North Pacific under the influence of two CMIP5 climate scenarios. Ocean Model. (2015).
    40. Harley, M. D., Barnard, P. L. & Turner, I. L. Coastal Sediments 2015: The Proceedings of the Coastal Sediments 2015 (World Scientific, 2015).
     
  • SW Cali Commentary / Net Production 3:51 am on October 10, 2014 Permalink | Reply
    Tags: , global news, mountian lion   

    WATCH: Mountain lion climbing onto homeowner’s car caught on camera 

    Global News

    WATCH: A San Jose area man has released video of a mountain lion that climbed on his car and stalked across his lawn before disappearing into the neighbourhood. Betty Yu reports.

    TORONTO – A San Jose area man has released surveillance video of a mountain lion that climbed on his car early Tuesday morning in an effort to warn neighbours.

    “It was scary… I did not expect [it in] this area because this is still [the] city,” homeowner David Tang told CBS reporter Betty Yu.

    The cat pounced on the roof of Tang’s Toyota Camry – parked in the driveway – around 3 a.m.

    He says he released the video to warn his Almaden Valley neighbours of the dangers lurking nearby.

    “The major concern I have is the safety for the kids, and lots of single people doing a morning walk,” Tang told KPIX.

    After spending close to…

    View original post 71 more words

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel